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Abstract. A fireball of —6 absolute magnitude, which left the at-
mosphere again after appearing at heights of around 100 km
above Czechoslovakia and Poland was photographed at two
Czech stations of the European Fireball Network. The body
travelled a 409-km luminous trajectory in 9.8 seconds with initial
velocity of 41.7 km/s. The type I fireball was produced by a me-
teoroid mass of 44 kg, from which only 0.35 kg were ablated. The
meteoroid left the Earth in a changed orbit and with solidified
fusion crust on its surface. Detailed data on the fireball trajectory
and both the encounter and outcast orbits are given. A special
method for long trajectory determination of nearly horizontal
motion was invented. This method is based on angular velocity
measurements from the excellent record of one station combined
with one direction derived from the not-so-good record of the
other station and computes pericenter position of Keplerian mo-
tion from observations very close to this point.
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1. Introduction

The entry of a meteoroid into the Earth’s atmosphere usually
terminates by complete ablation of the body well above the
Earth’s surface. Large bodies can, under suitable circumstances,
reach the Earth’s surface as meteorites (even bigger bodies are
destroyed by explosive impacts). But there is another possibility
for a meteoroid survival. If it enters the atmosphere almost
tangentially, then, after appearing as a meteor and losing a part
of its mass, it can leave the atmosphere again and return to a
modified heliocentric orbit.

The first scientifically observed event of this type was the
famous daylight fireball of August 10, 1972 above the United
States and Canada (see Jacchia, 1974 for the description of the
event and Ceplecha, 1979 for the correct trajectory, mass and
orbits based on the original observational data of Rawcliffe et
al., published with three numerical mistakes in Nature, 1974: do
not use the data from Nature, they are completely misleading).
The 1972 fireball reached the minimal height 58 km above the
Earth’s surface, its observed trajectory was 1500 km long and its
geocentric velocity decreased from 15.0 to 14.2 km/s during the
atmospheric flight. The estimated mass of the meteoroid was 103
to 10° kg.
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We report here the second Earth-grazing fireball, pho-
tographed by two Czech stations of the European Fireball Net-
work on Oct 13, 1990. Because the standard methods of reduction
of meteor photographs proved to be inadequate in this case, the
special method for determining meteor trajectory was developed
(see Sect. 3).

2. Observations and basic reductions
2.1. Visual observations

Visual observations were reported by three independent comet
observers in Czechoslovakia (P. Pravec, P. Klasek and L. Bu-
lickova). These observations provided the time of the event:
03t27m16° 4+ 3° UT (for the beginning), and the unambiguous
direction of meteor flight, from the south to the north. A 10 s
train was also visible.

Note that the radio reflection of this fireball was obtained by
Kristensen (1991) in Havdrup, Denmark at 03"27™24% 4+ 6° UT.
The duration of the reflection was 78 seconds.

2.2. Photographic observations

Photographic observations came from two stations of the Eu-
ropean Fireball Network, station no. 14, Cervend hora A =
17°32'38", ¢ = 49°46'40”, h = 750 m), and station no. 9, Svratouch
(A = 16°02'09", ¢ = 49°44'08”", h = 744 m). Both photographs
were taken by stationary cameras equipped with all-sky fish-eye
objectives (f = 30 mm, 1:3.5). The cameras were provided by a
rotating shutter breaking the image 12.5 times per second. This
enables velocity determinations.

The meteor image from station no.14 is very favourable.
The visible trajectory is 110° long, starting 51° above the south
horizon, passing the zenit 1° westwards only, and disappearing
19° above the north horizon. Unfortunately the shutter breaks
are unresolved on last 4° of the trajectory due to very small
angular velocity of the meteor in this extreme region.

The photograph from station no.9 is less convienient. The
meteor is projected 30° above the northeast horizon and it is
relatively faint and only 15° long.

2.3. Preliminary trajectory

Photographic observations from two different stations (or more)
make possible to determine meteor trajectory in the atmosphere
by means of a pure geometric way. Two methods are commonly
used at the Ondfejov Observatory, the method of planes (Ce-
plecha 1987), and the straight least-squares method (Borovicka
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1990). Both methods assume that the meteor trajectory is a
straight line, which is fully sufficient assumption for normal me-
teors with shorter trajectories not too much exceeding 100 km.

For the meteor in this paper these standard methods could
be used only as a first step of approximation . They revealed that
the meteor moved almost exactly in the south-north direction
at a height of about 100 km above the Earth’s surface. The
observed trajectory was 400 km long and the point of minimum
height (further called “perigee”) occured within the photographed
trajectory. At the end this meteor already moved from the Earth
away.

This preliminary computation yielded the average meteor ve-
locity 42 km/s, but an apparent gradual increase of velocity by
2 km/s along the observed trail was revealed. This physically
unrealistic effect was due to simple geometry, which went into
systematicly wrong results: the straight line assumption was in-
adequate and, moreover, the slope of the straight line was fully
determined by means of the unfavourable observation from sta-
tion no.9, because station no.14 lay almost under the meteor
trajectory. The effect of increasing velocity could not be removed
within the framework of standard methods, which indicated that
especially the computed position of perigee was unrealible. An
entirely different method, described in Sect. 3, was then used for
computing the final trajectory.

The preliminary results were published in GVN Bulletin (Ce-
plecha et. al. 1991).

2.4. Physical characteristics

The brightness of the meteor was almost constant. Knowing the
brightness, velocity and height, we can estimate the meteoroid
mass and deceleration. We used Eq. (11) from Ceplecha’s paper
(1975). Then
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where I is the light intensity (M = —2.5logI being the absolute
magnitude), 7 is the luminous efficiency, o the ablation coefficient,
K = FAQ;,Z/ ? is the shape-density coefficient, ¢, the air density,
v the velocity of the meteoroid, I' the drag coefficient, A the
geometrical shape factor and g, the meteoroid density. Assuming
the values of g, and ¢ from Ceplecha (1988) for different fireball
types, assuming K = 0.5 for type I fireball and using 7 = 8.5 x
1071 (c.gss. units combined with I in 0 magnitude units: M =
—2.5logI) for v = 42 km/s, the mass for type I fireball from
Eq. (1) resulted in 44 kg at the perigee point, where the smooth
value of the absolute magnitude was —6.25. The mass for type II
fireball would be 4.6 kg, for type IIIA 0.6 kg and for type IIIB
0.07 kg.

Using the luminous equation (Eq. (10) in Ceplecha 1975), we
can find

Am = iz Ide, ?)
TV

where Am is the total ablated mass. With f Idt = 2600 (¢t in
seconds and I in O magnitude units) for this fireball, Eq. (2)
yields Am = 0.35 kg. This value is the same for all fireball types,
because it is independent of oK. But this clearly eliminates the
fireball types IIIA and IIIB.

The change of brightness of this fireball is very small during
the entire photographed trajectory (see Fig. 4). Directly measured

values of brightness: beginning point M = —5.57+0.21, terminal
point M = —6.15 + 0.21, maximum M = —6.45. If we omit the
beginning and terminal point, the smooth values are: maximum
—6.25 and minimum —5.96; standard deviations of individual
measured points are all inside the interval of +0.13 to +0.18. The
average absolute magnitude is —6.114-0.02 for 88 measured points
along the photographed trajectory (+0.18, if expressed for one
measured point assuming constant brightness). Thus the change
of brightness is at the limit of the precision of our measurements
and is constant within +0.2 magnitude.

The change of velocity is also small. The double-station
directly-derived value is not precise enough, but we were able
to fit the 88 observed time marks inside the time interval of 6.9
seconds with a constant velocity of v = 41.74 4+ 0.08 km/s (see
Sect. 3.6). There is no systematic change of residuals in favour
of some significant deceleration close to the terminal point (see
Fig. 2). Thus the body kept its velocity almost certainly within
the 3 standard deviation : 41.74 + 0.24 km/s.

The air drag deceleration at the perigee point can be deter-
mined from Eq. (1) of Ceplecha’s paper (1975). For type I fireball
we have j—f = —1.7 m/s?, which corresponds to total change of
velocity Av = 0.012 km/s over the 6.9 seconds of photographed
trajectory, where the velocity could be measured. The same quan-
tities for type II fireball are § = —53 m/s?, and Av = 0.37 km/s.
Thus also type II fireball can be excluded.

The far most probable situation with this fireball corresponds
to type I body (meteorite-dropping fireball) with mass of 44 kg,
from which about 0.4 kg was ablated. The meteoroid left the
Earth in a changed orbit and with solidified fusion crust on its
surface, which made it a body similar to meteorites, but traveling
in space again.

3. Detailed trajectory calculation
3.1. Statement of the problem

For type I fireball, the motion can be treated as a purely Keple-
rian motion in the Earth’s gravity field, because the atmospheric
deceleration was negligible (see Sect. 2.4). We assume type I fire-
ball in our computations and would consider this assumption to
be confirmed, if no systematic change of residuals were present
in the results. The gravity field near the Earth is considered as
belonging to a mass point located at the Earth’s center and of
total mass of the Earth and the Moon (designated M). Unfortu-
nately the trajectory cannot be constructed geometrically because
only a small part of the trajectory (1/4) was recorded from both
the stations. The physical relation between velocity and orbital
parameters (pericenter distance and eccentricity) have to be used.
Thus the observed angular velocity from station no. 14 provides
additional information for trajectory determination. Note that the
solution of the August 1972 fireball (Ceplecha 1979) represented
a different problem, because in that case the velocity was directly
measured by an infrared satellite and the deceleration was quite
considerable.

3.2. Orbital plane

The meteor orbital plane, i.e. the plane containing meteor tra-
jectory and the Earth’s center, was taken from the solution of
the straight least-squares method (Borovitka 1990). Although
this method assumes the trajectory to be linear, the computed
plane containing the trajectory is considered to be correct and
the curved trajectory is located in this plane. This is justified
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Fig. 1. Meteoroid trajectory in circular approximation

by the fact that the solution of the plane was dependent al-
most completely on the observation of station no. 14, which lay
very close to the orbital plane and the trajectory curvature was
unobservable from this station.

The calculations were performed in the coordinate system
which does not rotate together with the Earth. This avoided the
Corriolis force, which would cause an observable effect (~ 140 m
deviation) in the co-rotating coordinate system. The coordinates
of stations were thus time-dependent.

3.3. Circular approximation

The real meteor trajectory is a hyperbole in the orbital plane
described by the equation

qgle+1)

r=1+e0059’ )

where r is the radial distance from the center of gravity, 9 the
true anomaly, e the eccentricity, and g the pericenter distance
(perigee is used in another meaning here, see Sect. 2.3). The
orbital velocity v is given by

[ (-]

where G is the gravitational constant, M is the total mass of the
Earth and the Moon, and a = q/(1 —e) is the semimajor axis.
The velocity in infinity (r — o) is

1/2
o, = [%M—(e _ 1)] , )

and the velocity at pericenter is

1/2
%=[%?w+n] . ©6)

Combining Egs. (3) and (4) we can express the velocity as a
function of the true anomaly:

_(6Mm 2e(1—cos9 1"

The approximate values are known from preliminary calcula-
tions: v, =~ 40 km/s, ¢ =~ 6460 km. From Eq. (6) follows e ~ 25.
The meteor was certainly not observed in a larger distance from
pericenter than [ = 500 km. Thus the maximal true anomaly was
Imax = 1/q = 0.077 = 44. Substituting 9., into Eq. (7) we find
that the ratio vg_g,,, /v, is 0.99989 so that the velocity at the edge
of observed meteor path differ from the velocity at pericenter by
4 m/s only. This is well below the accuracy of our observations.
The meteor velocity can be therefore considered constant along
the whole observed trajectory.

Further we can replace the hyperbole with an osculating
circle at the point of pericenter. The radius of the circle will be

K=q+1). ®)

The radial distance (derived from the triangle COM in Fig. 1)
in this approximation is:

r=q(y/1+2e+e2cos23—ecosd). )

The difference between r computed from (3) and r computed
from (9) for § = .« is less than 1 meter.

In the next sections we consider the meteoroid as if it moved
along a circular orbit with a constant velocity during all the pho-
tographed trajectory. This is an entirely sufficient approximation
holding for this part of the trajectory.

3.4. Determination of circular trajectory from the angular velocity

The geometrical situation in the orbital plane is displayed in
Fig. 1. The circle represents the Earth and the circular arc repre-
sents a part of the meteoroid orbit. At start, let us assume that

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992A%26A...257..323B&amp;db_key=AST

FT992AGA = Z257- “3Z3B0

326

station no. 14 (point S) lies exactly in the orbital plane at the
distance R from the Earth’s center. The position of pericenter
relatively to the station is described by the angle y. The instante-
neous position of the meteor (point M) is described by the angle
¢ at the center of the osculating circle. The distance between
the station and the meteor is ¢ and the position of meteor as
seen from the station is described by the angle y (a “geocentrical
zenith distance”).

The observed quantity is the angle y. Its time dependence is
given by the time marks (breaks) on the meteor image. In order
to determine orbital parameters we have to find the theoretical
change of y as a function of the parameters.

As the meteoroid velocity v is constant, the angle ¢ is directly
proportional to time:

v
® =@+ —t, (10)

K
where ¢y depends on the zero-time point. To derive the relation
between p and ¢ , we set two auxiliary rectangular coordinate
systems in the orbital plane (see Fig. 1), the first at the center
of the orbital circle (x, y;-system) and the second at the station
position (xz, y,-system). The relation between these two systems
is

X = x; —(K—¢q)—Rcosy (11)
y2 = yi +Rsiny.

The position of the meteoroid in the first system is

x; = Kcosg (12)
y1 = Ksing

and in the second system

Xy = gcos(y —7) (13)

Y2 = esin(y —y).

Excluding X1, y1,x2,y, from the Egs. (11) — (13) we obtain fol-
lowing relations:

_ Ksin¢ + Rsiny
w—v+arctan(q—K(1~COS¢)_RCOSV) (14
0= {R*+¢>—2Rqcosy + 2K (1 —cos @) (K — q) +

+ 2KR [cosy — cos(ep + )] }1/2 (15)

By means of Eq. (14) ¢ can be transformed into y. The inverse
relation is also useful. It can be obtained directly from Eq. (14):

sin = —P cos(y —7) + sin(y —y)vV1 — P2, (16)

where
1 . .
P = E[Rsmw + (K —q) sin(yp — y)].

We set time to zero at the moment when the meteor passes
geocentrical zenith of the station. The angle ¢¢ in Eq. (10) can
be then computed from Eq. (16) for p = 0. The velocity v in
Eq. (10) is given by Egs. (6) and (8):

)= G;”K (17)

The theoretical value of p, depending on three unknown
parameters K, g, and y, which define the meteor trajectory in
the orbital plane, can be now computed from Egs. (10) and (14)
for each time ¢ corresponding to a time mark on the observed
meteor trajectory. Having n time marks, we have n conditions
for the three unknown parameters, and the best values of K, g,
and, y can be found by the non-linear method of least squares
(linearizing for parameter increments and using approximation
steps by changing parameters and adding these increments each
step to get new values of parameters).

In fact we do not observe directly the angle ¢ because the
station does not lie exactly in the orbital plane. Moreover the
station moves as the Earth rotate. But the distance D of the
station from the orbital plane is known for each time. The station
moved almost perpendicularly to the orbital plane, because it
was situated very close to it (in fact the station just crossed the
orbital plane when the meteor appeared) and the orbital plane
was orientated in the south-north direction. The point S in Fig. 1
represents now the projection of the station into the orbital plane
and the angle y is considered to be constant. The station lies in
the distance D from the point S perpendiculary to the plane.

The angle 1 computed from Eq. (14) can be transformed into
the true geocentric zenith distance z according to the formula

Rocosyp — D?
RoA/? + D2 ’

where g is given by Eq. (15) and R, is the geocentrical radius of
the station, while R is the distance of point S from the Earth’s
center now:

R=+/R2—D~.

Thus the method of least squares can be applied to the angle z
instead of y as well.

Cosz =

(18)

(19)
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Fig. 2. Observed and computed geocentric zenith distances of the fireball
at station no. 14
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Fig. 3. Observed (crosses) and computed (line) fireball path in equatorial
coordinates at station no.9

3.5. Adding distance scale

The method described in previous paragraph was used for the
data from station no. 14. This was only partially successful. While
the position of pericentrum (angle y) was determined unambig-
nously, the other two parameters remained uncertain. But this
is not surprising. As we have used angular velocities only, the
method can hardly decide, whether the meteor moves in a small
distance with a small velocity or in larger distance and faster.
Extremely precise observation were needed to derive distances
from angular velocity change only.

To bring in the distance scale we have to turn to the ob-
servation from the second station (no.9.) again. A point on the
average meteor path as observed from station no.9 is used as a
crucial point. The direction corresponding to this point defines
a point in the orbital plane, the orbit must pass close to. The
distance gr from the projected station S to this supporting point
and the corresponding angle g are computed and an additional
condition that ¢(pg) must be as near as possible to gr is built
in the method of least squares. The function g(yp) is not avail-
able but ¢ can be computed from p by means of ¢ using the
formulae (16) and (15) successively.

The system of conditions for the method of least squares
becomes “heterogeneous” now, because the zenith distances and
the distance ggr are measured in different units (radians and
kilometers respectively). The weight of the last condition must be
generally different from 1. In fact we can influence the “strength”
of the last condition by changing its weight. The value 10™* seems
to be reasonable and it proved to be rather strong.

Note that the introduction of the additional condition does
not restrict the possible values of pericenter position and the
trajectory curvature. They are still determined by the angular
velocities. But only one supporting point is allowed. More points
would predetermine the trajectory shape.

We know that the slope of the observed meteor trail from
station no.9 is not absolutely correct. This fact resulted in the
apparent velocity increase when the standard methods were used.
But just one point should be correct. Therefore we tried different
points along the average path as the crucial points and then
we compared the resulting trajectories, as they should be visible
from station no.9, with the individual measured points. The best
conforming trajectory has been chosen as the final solution. 18
measured points lie within the error of measurement (+0°03)
from the final trail and only 2 points have larger deviation ((21).
Both bad points are located at the beginning of the observed
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path, where the meteor trail is faint and their deviations are
undoubtedly due to the errors of measurements.

Consequently we have found the solution of expected char-
acter (constant velocity, circular trajectory) which is consistent
with the observations from both stations. This is demonstrated
in Figs. 2 and 3. Figure 2 compares the observed and computed
course of zenith distance from station no. 14. Figure 3 shows the
positional measurements on station no.9 compared to the final
trajectory as seen from this station.

3.6. Final orbits

The least-squares solution yielded the parameters K, g, and y
(K = 180400 km, g = 6463.8 km, y = 12766). The orbital-plane
solution (see Sect. 3.2) defined the inclination of the geocentrical
orbit i and the right ascension of the ascending node Q. Velocity
was computed according to Eq. (17) and eccentricity from (8).
The argument of pericenter @ was obtained from the position of
station no. 14 and the angle y. The resulting geocentric orbital
parameters are summarized in Table 1.

Table 1. Geocentric orbit

pericenter distance q 64638 + 0.2 km
eccentricity e 269 + 0.1
argument of pericenter «  51°469 + (2001
RA of ascending node Q 9474 + (201

inclination

i 93347 £+ (R004
pericenter passage T 1990 Oct 13; 03P27™225+4°
velocity at pericenter g 41.74 4+ 0.08 km/s

The geographic coordinates of some important points on the
observed part of the trajectory are given in Table 2. In addition,
the absolute magnitudes versus time are given in Fig. 4 for each
measured point. The time can be converted into height by means
of the fitting formula h = 98.672 + 0.12958 - (t — 4.258)? with
intrinsic precision of 10 m below 120 km of height.

The photographed part of the trajectory stretches from Zlin
in Czechoslovakia to Poznan in Poland. We suppose that the
fireball could be still visible over south Baltic Sea at the height
of 110 km.

Table 2. Relative time, geographical coordinates and absolute
magnitudes of important points on the observed part of the
trajectory

t[s] A 1) h [km] mag
beginning (—1.9) 17°39°  49°03 103.7 (—5.6)
first velocity-point —1.5 1737 49 13 103.0 —6.1
station.no. 149 000 1732 4947 101.0 —6.2
perigee 426 1718 5121 98.67 —6.2
pericenter 477 1716 5132 98.70 —6.0
last velocity-point 54 1714 5146 98.84 —6.1
end 79) 1704 5241 1004 (—6.1)

a) the point closest to the zenith at station no. 14

The heliocentric orbits before and after the encounter with
the Earth were also computed. The asymptotes of the geocentric
hyperbole define the direction of the meteoroid flight at the
Earth’s position relative to the Earth when the Earth’s influence
is removed. The asymptotic true anomaly is given by
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Fig. 4. Measured absolute magnitude as a function of time. A minor
smooth variation is indicated, but it is insignificant.

1
cos Iy = - (20)
(see Eq. (3)). The equatorial coordinates of the radiant or an-
tiradiant o,0 (i.e. the directions of the asymptotes) are given
by
sind = sini sin(® F 9) (21)
sin( — Q) = tand coti

where the upper sign is valid for radiant. (Egs. (21) should be
slightly transformed, if w F 34, were greater than 7). The o and
0 together with the velocity v, computed from (5) are equivalent
to the quantities ag, dg, and vg (geocentric radiant and velocity)
respectively from the paper of Ceplecha (1987). The heliocentric
orbits have been computed according to the same paper. The
results are given in Table 3. The semimajor axis decreased after
the encounter and the inclination, which had been rather large
already, slightly increased.

Table 3. Heliocentric orbits (1950.0)

before encounter after encounter

oG 9727 + (®01 96284 + (®01

og —4®55 + 01 —36231 + (®01

vG 40.22 + 0.17 km/s 40.22 + 0.17 km/s
a 272 +0.08 AU. 1.87 £ 0.03 A.U.
p 45 +02yr 2.56 4+ 0.06 yr

e 0.64 + 0.01 0.473 + 0.009

q 0.9923 + 0.0001 A.U. 09844 + 0.0002 A.U.
[0) 445 +0.15 A.U. 2.76 + 0.07 A.U.
w %6 + 1 166 + (2

Q 18973 18973

i 7124 + (2 7484 + (2

4. Conclusions

We present here complete data on the 1990 October 13 fireball.
This is the first Earth-grazing fireball with available double-
station photographs. Its mass was about 44 kg and it was only
slightly altered by the atmospheric ablation. The meteoroid left
the Earth in a changed orbit losing only 0.35 kg of its mass and
having formed a solidified fusion crust like meteorites.

The Earth-grazing meteors should not be especially rare.
About 0.7% of meteoroids entering the Earth’s atmosphere have
trajectory with the perigee in heights between 70 km and 120 km
above the surface. The chance for surviving an Earth’s encounter
then depends on meteoroid mass, compactness and velocity. But
this kind of meteoroids will be always faint because they move
in less dense layers of the atmosphere. For example the fireball

presented here would reach almost —15 absolute magnitude, if it
flew vertically to the Earth surface (—14.6 magnitude at a height
of 41 km and terminating at a height of 29 km with mass below
1 gram). The 1972 August 10 fireball was, of course, a quite
exceptional case.

The method developed for the determination of the trajectory
of the present fireball could have a wider use. In its basic form
it allows to compute pericenter position from angular velocity
measurements for a Keplerian motion.

References

Borovicka J., 1990, Bull. Astron. Inst. Czechosl. 41,391

Ceplecha Z., 1975, Bull. Astron. Inst. Czechosl. 26,242

Ceplecha Z., 1979, Bull. Astron. Inst. Czechosl. 30,349

Ceplecha Z., 1987, Bull. Astron. Inst. Czechosl. 38,222

Ceplecha Z., 1988, Bull. Astron. Inst. Czechosl. 39,221

Ceplecha Z., Spurny P., Borovicka J., 1991, Smithsonian Bull.
GVN 16, No. 4, p. 18

Jacchia L.G., 1974, Sky Telesc. 48,4

Kristensen G.M., 1991, WGN 19,29

Rawcliffe R.D., Bartky C.D., Li F,, Gordon E., Carta D., 1974,
Nature 247,449

This article was processed by the author using Springer-Verlag IATgX
A&A style file 1990.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992A%26A...257..323B&amp;db_key=AST

